Extensions 1→N→G→Q→1 with N=C32 and Q=C3xD7

Direct product G=NxQ with N=C32 and Q=C3xD7
dρLabelID
D7xC33189D7xC3^3378,53

Semidirect products G=N:Q with N=C32 and Q=C3xD7
extensionφ:Q→Aut NdρLabelID
C32:(C3xD7) = He3:D7φ: C3xD7/C7C6 ⊆ Aut C32636+C3^2:(C3xD7)378,38
C32:2(C3xD7) = D7xHe3φ: C3xD7/D7C3 ⊆ Aut C32636C3^2:2(C3xD7)378,30
C32:3(C3xD7) = C32xD21φ: C3xD7/C21C2 ⊆ Aut C32126C3^2:3(C3xD7)378,55
C32:4(C3xD7) = C3xC3:D21φ: C3xD7/C21C2 ⊆ Aut C32126C3^2:4(C3xD7)378,57

Non-split extensions G=N.Q with N=C32 and Q=C3xD7
extensionφ:Q→Aut NdρLabelID
C32.(C3xD7) = D7x3- 1+2φ: C3xD7/D7C3 ⊆ Aut C32636C3^2.(C3xD7)378,31
C32.2(C3xD7) = C9xD21φ: C3xD7/C21C2 ⊆ Aut C321262C3^2.2(C3xD7)378,37
C32.3(C3xD7) = D7xC3xC9central extension (φ=1)189C3^2.3(C3xD7)378,29

׿
x
:
Z
F
o
wr
Q
<